Minggu, 07 September 2008

S A K U R A

It's one month I have been work at HLPO, in here Japanese culture environment specially for the omiyage and japenese student who intern and the sensei from Khusyu Univ.

This article bellow is about Sakura Flower that be icon of Japan.

Sakura adalah bunga yang selalu diidentikkan dengan negara Jepang yang mekar setiap tahun ketika haru (musim semi). Sakura merupakan icon penting bagi negara Jepang yang juga sering diidentikkan keindahan dan kecantikan sehingga kata sakura dijadikan sebagai nama untuk nama perempuan yang melambangkan kecantikan dan keindahan. Selain itu, motif bunga sakura dapat juga kita temukan di berbagai-macam barang seperti pakaian (kimono), alat-alat tulis dan peralatan rumah tangga.

Jenis Bunga Sakura

Zaman dahulu sakura tumbuh secara alami di gunung dan taman. Jenisnya pun tidak begitu banyak, tapi sekarang karena tingginya ilmu pengetahuan sudah ada 300 jenis bunga sakura. Semua jenis bunga sakura itu merupakan hasil persilangan bunga sakura dari bebagai jenis yang tumbuh dipelbagai daerah di Jepang. Namun, di antara 300 jenis bunga sakura itu ShomeiYoshino-lah yang paling terkenal. Shomei Yoshino adalah bunga sakura yang dihasilkan dari persilangan bunga sakura yang dilakukan pada zaman Edo. Warnanya putih bersih berona pink pucat terutama dekat tangkainya. Bunga sakura jenis shomei yoshino ini butuh waktu satu minggu dari mulai kuncup sampai gugur, namun dapat juga lebih cepat kalau keadaan cuaca tidak bagus misalnya hujan lebat dan angin kencang. Sakura yang mekar dan mulai berguguran terlihat putih dari puncak pohon sampai ke bawah.

Mekarnya Bunga Sakura

Hari mekar bunga sakura berbeda-beda di tiap-tiap daerah karena Jepang negara yang memanjang sehingga ada perbedaan sebesar 20°antara sisi utara dan sisi selatan yang menyebabkan iklim Jepang juga berbeda, yakni makin ke utara waktu mekar bunga sakura makin lambat. Bunga sakura pertama kali mekar di Okinawa, yaitu pada pertengahan bulan Januari. Di Kyushu bunga sakura mekar pada akhir bulan Maret, sedangkan di Tokyo bunga sakura mekar di awal bulan April. Di Hokkaido bunga sakura mekar bulan Mei. Mekarnya bunga sakura ini menandakan datangnya haru (musim semi) dan bertepatan dengan tahun ajaran baru serta masa penerimaan karyawan baru.


Pada saat bunga sakura hampir mekar, di tv ada pemberitaan tentang perkiraan kapan bunga sakura kuncup dan mekar sempurna (mankai). Hari mekarnya bunga sakura sangat ditunggu-tunggu oleh orang Jepang. Biasanya, pada hari mekarnya bunga sakura orang-orang berkumpul dan berpesta di bawah pohon sakura minum sake atau bir, menyanyi atau berdiskusi sambil menikmati keindahan bunga sakura. Acara ini disebut ohanami. Bunga sakura tidak hanya sedap dipandang, tapi juga nikmat diminum dalam bentuk teh bunga sakura, yang lebih dikenal dengan sebutan sakuracha. Teh bunga Sakura umumnya diminum pada kesempatan-kesempatan istimewa seperti pesta pernikahan. Selain dijadikan teh, bunga sakura juga dapat digunakan untuk melapisi mochi ketika membuat kue sakura mochi. Perlu teknik khusus untuk membuat sakura mochi ini karena kelopak bunga sakura itu kecil. Meski saat ini hampir semua tempat (sekolah, taman, kuil) ditumbuhi pohon bunga sakura, tapi tidak semua tempat cocok dijadikan tempat untuk melihat bunga sakura.

Adapun daerah-daerah yang pemandangan bunga sakuranya bagus di antaranya adalah :

1. Daerah Kanto

Tokyo: Taman Ueno (Distrik Taito), Taman Shinjuku (Distrik Shinjuku), Taman Sumida (Distrik Sumida), Taman Koganei (Kota Koganei), Taman Inogashira (Kota Musashino)

2. Daerah Tokai

Perfektur Gifu : Taman Usuzumi/ Neodani (Kota Motosu), Pinggir Sungai Shinsakai (Kota Kakamigahara), Kamagatani (Kota Ikeda)

3. Daerah Kansai

Perfektur Osaka : Taman Istana Osaka (Osaka), The Mint Bureau (Osaka), Taman Expo ‘70 Perfektur Hyogo : Taman Istana Himeji (Kota Himeji), Taman Akashi (Kota Akashi), Taman Shukugawa (Kota Nishinomiya) Perfektur Nara: Taman Nara (Kota Nara), Gunung Yoshino (Kota Yoshino), Taman Kooriyamajoshi (Kota Yamato Kooriyama)

Bio Ethanol

Ethanol also called ethyl alcohol, grain alcohol, or drinking alcohol is volatile, flameable, colorless liquid. It is a phycoactive drug, best known as the type of alcohol found in alcoholic beverages and in thermometer. In common usage it is often reffered to simply as alcohol. Ethanol is also known as EtOH, using the common organic chemistry notation of representing the ethyl group (C2H5) with Et.

Except for the use of fire, the fermentation of sugar into ethanol is very likely the earliest organic reaction known to humanity, and the intoxicating effects of ethanol consumption have been known since ancient times. In modern times, ethanol intended for industrial use is also produced from by-products of petroleum refining.

Ethanol for use in alcoholic beverages, and the vast majority of ethanol for use as fuel, is produced by fermentation. When certain species of yeast, most importantly, Saccharomyces cerevisiae, metabolize sugar in the absence of oxygen, they produce ethanol and carbon dioxide. The chemical equation below summarizes the conversion:

C6H12O6 → 2 CH3CH2OH + 2 CO2

The process of culturing yeast under conditions to produce alcohol is called fermentation. Ethanol's toxicity to yeast limits the ethanol concentration obtainable by brewing. The most ethanol-tolerant strains of yeast can survive up to approximately 15% ethanol by volume.

The fermentation process must exclude oxygen. If oxygen is present, yeast undergo aerobic respiration which produces carbon dioxide and water rather than ethanol.

In order to produce ethanol from starchy materials such as cereal grains, the starch must first be converted into sugars. In brewing beer, this has traditionally been accomplished by allowing the grain to germinate, or malt, which produces the enzyme, amylase. When the malted grain is mashed, the amylase converts the remaining starches into sugars. For fuel ethanol, the hydrolysis of starch into glucose can be accomplished more rapidly by treatment with dilute sulfuric acid, fungally produced amylase, or some combination of the two.

On January 14, 2008, General Motors announced a partnership with Coskata, Inc. The goal is to produce cellulosic ethanol cheaply, with an eventual goal of US$1 per U.S. gallon ($0.30/L) for the fuel. The partnership plans to begin producing the fuel in large quantity by the end of 2008. By 2011 a full-scale plant will come on line, capable of producing 50 to 100 million gallons of ethanol a year.

Ethylene hydration or brewing produces an ethanol–water mixture. For most industrial and fuel uses, the ethanol must be purified. Fractional distillation can concentrate ethanol to 95.6% by weight (89.5 mole%). This mixture is an azeotrope with a boiling point of 78.1 °C, and cannot be further purified by distillation.

In one common industrial method to obtain absolute alcohol, a small quantity of benzene is added to rectified spirit and the mixture is then distilled. Absolute alcohol is obtained in the third fraction, which distills over at 78.3 °C (351.4 K).Because a small amount of the benzene used remains in the solution, absolute alcohol produced by this method is not suitable for consumption, as benzene is carcinogenic.

The largest single use of ethanol is as a motor fuel and fuel additive. The largest national fuel ethanol industries exist in Brazil (gasoline sold in Brazil contains at least 25% ethanol and anhydrous ethanol is also used as fuel in more than 90% of new cars sold in the country). The Brazilian production of ethanol is praised for the high carbon sequestration capabilities of the sugar cane plantations, thus making it a real option to combat climate change.

Henry Ford designed the first mass-produced automobile, the famed Model T Ford, to run on pure anhydrous (ethanol) alcohol—he said it was "the fuel of the future". Today, however, 100% pure ethanol is not approved as a motor vehicle fuel in the U.S. Added to gasoline, ethanol reduces ground-level ozone formation by lowering volatile organic compound and hydrocarbon emissions, decreasing carcinogenic benzene, and butadiene, emissions, and particulate matter emissions from gasoline combustion.

Combustion of ethanol in an internal combustion engine yields many of the products of incomplete combustion that are produced by gasoline and significantly larger amounts of formaldehyde and related species such as formalin, acetaldehyde, etc. This leads to a significantly larger photochemical reactivity that generates much more ground level ozone. This data has been assembled into The Clean Fuels Report comparison of fuel emissions and shows that ethanol exhaust generates 2.14 times as much ozone as does gasoline exhaust. When this is added into the custom "Localised Pollution Index (LPI)" of The Clean Fuels Report the local pollution, i.e. that which contributes to smog, is 1.7 on a scale where gasoline is 1.0 and higher numbers signify greater pollution. This issue has been formalised by the California Air Resouces Board in 2008 by recognising control standards for formaldehydes et al as an emissions control group much like the conventional NOx and Reactive Organic Gases (ROGs).

Prior to the development of electronic fuel injection (EFI) and computerized engine management, the lower energy content of ethanol required that the engine carburetor be rejetted to permit a larger volume of fuel to mix with the intake air. EFI is able to actively compensate for varying fuel energy densities by monitoring the oxygen content of exhaust gases. However, a standard EFI gasoline engine can typically only tolerate up to 10% ethanol and 90% gasoline. Higher ethanol ratios require either larger-volume fuel injectors or an increase in fuel rail pressure to deliver the greater liquid volume needed to equal the energy content of pure gasoline.